Preprint
Article

DeepSOCIAL: Social Distancing Monitoring and Infection Risk Assessment in COVID-19 Pandemic

Altmetrics

Downloads

797

Views

290

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 September 2020

Posted:

17 September 2020

You are already at the latest version

Alerts
Abstract
Social distancing is a recommended solution by the World Health Organisation (WHO) to minimise the spread of COVID-19 in public places. The majority of governments and national health authorities have set the 2-meter physical distancing as a mandatory safety measure in shopping centres, schools and other covered areas. In this research, we develop a Deep Neural Network-based Model for automated people detection, tracking, and inter-people distances estimation in the crowd, using common CCTV security cameras. The proposed DNN model along with an inverse perspective mapping technique leads to a very accurate people detection and social distancing monitoring in challenging conditions, including people occlusion, partial visibility, and lighting variations. We also provide an online infection risk assessment scheme by statistical analysis of the Spatio-temporal data from the moving trajectories and the rate of social distancing violations. We identify high-risk zones with the highest possibility of virus spread and infection. This may help authorities to redesign the layout of a public place or to take precaution actions to mitigate high-risk zones. The efficiency of the proposed methodology is evaluated on the Oxford Town Centre dataset, with superior performance in terms of accuracy and speed compared to three state-of-the-art methods.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated