Preprint
Article

Self-Attention and Adversary Guided Hashing Network for Cross-Modal Retrieval

Altmetrics

Downloads

401

Views

226

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 September 2020

Posted:

18 September 2020

You are already at the latest version

Alerts
Abstract
Recently deep cross-modal hashing networks have received increasing interests due to its superior query efficiency and low storage cost. However, most of existing methods concentrate less on hash representations learning part, which means the semantic information of data cannot be fully used. Furthermore, they may neglect the high-ranking relevance and consistency of hash codes. To solve these problems, we propose a Self-Attention and Adversary Guided Hashing Network (SAAGHN). Specifically, it employs self-attention mechanism in hash representations learning part to extract rich semantic relevance information. Meanwhile, in order to keep invariability of hash codes, adversarial learning is adopted in the hash codes learning part. In addition, to generate higher-ranking hash codes and avoid local minima early, a new batch semi-hard cosine triplet loss and a cosine quantization loss are proposed. Extensive experiments on two benchmark datasets have shown that SAAGHN outperforms other baselines and achieves the state-of-the-art performance.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated