Preprint
Article

Scale-up of Physics-based Models for Predicting Degradation of Large Lithium Ion Batteries

Altmetrics

Downloads

208

Views

152

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

17 September 2020

Posted:

18 September 2020

You are already at the latest version

Alerts
Abstract
Large lithium-ion batteries (LIBs) in electric vehicles and energy storage systems demonstrate different performance and lifetime compared to small LIB cells, owing to the size effects generated by the electrical configuration and property imbalance. However, the calculation time for performing life predictions with three-dimensional (3D) cell models is undesirably long. In this paper, a lumped cell model with equivalent resistances (LER cell model) is proposed as a reduced order model of the 3D cell model, which enables accurate and fast life predictions of large LIBs. The developed LER cell model is validated via the comparisons with results of the 3D cell models by simulating a 20-Ah commercial pouch cell (NCM/graphite) and the experimental values. In addition, the LER cell models are applied to different cell types and sizes, such as a 20-Ah cylindrical cell and a 60-Ah pouch cell.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated