Preprint
Article

Cell Membrane Rupture: A Novel Test Reveals Significant Variations Among Different Brands of Tissue Culture Flasks

Altmetrics

Downloads

213

Views

175

Comments

0

This version is not peer-reviewed

Submitted:

21 September 2020

Posted:

23 September 2020

You are already at the latest version

Alerts
Abstract
Unanticipated errors in scientific research data can be attributed to the unwarranted assumption of uniformity in the polystyrene surface that is ubiquitously used in tissue culture flasks and dishes. We have shown that when adherent cells are subjected to fluid shear force, equivalent to rinsing the culture with a balanced salt solution, cells on some areas of the polystyrene surface will immediately rupture while still adherent on the surface. This heterogeneity on the polystyrene surface can cause unexpected variability in experimental results and in replicating experiments among labs. In this paper a novel quantitative method is described to measure the degree of heterogeneity on the polystyrene surface of tissue culture flasks. The results show significant variation among several brands of tissue culture flasks as well as large variability within the production lot of a manufacturer. The assay method involves loading the cells with a fluorescent marker that is released upon membrane rupture. Cell membrane rupture also causes the loss of marker proteins used in Westernblots. This novel assay method can be used to monitor the batch consistency and the manufacturing process of flasks and dishes. It may also be used to test new biomaterials.
Keywords: 
Subject: Biology and Life Sciences  -   Cell and Developmental Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated