Preprint
Article

Performance of GLASS WOOL FIBERS in ASPHALT CONCRETE Mixtures

Altmetrics

Downloads

333

Views

130

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

23 September 2020

Posted:

24 September 2020

You are already at the latest version

Alerts
Abstract
Nowadays, in order to improve asphalt pavement performance, durability and reduce environmental pollution caused by asphalt binder, many researchers are studying to modify asphalt concrete (AC) and find alternative paving materials to extend service life of asphalt pavement. One of the successful materials used in a modification of AC are fibers. Different types of fibers have been reinforced in AC mixture and improvements have been observed. This research studies the performance of glass wool fiber reinforced in a dense-graded asphalt mixture. Generally, glass fibers are known to have excellent mechanical properties such as high tensile modulus, 100% elastic recovery and a very high tolerance to heat. The glass wool fibers are commonly used as a thermal insulation material. In this research to evaluate the performance of glass wool fiber in AC, laboratory tests Marshall mix design test, Indirect tensile strength (IDT), Tensile strength ratio (TSR) and Kim test were conducted to determine a proper mix design, tensile properties, moisture susceptibility, rutting and fatigue behaviors. Results show that addition of glass wool fibers does affect the properties of AC mixture. The use of glass wool fibers showed a positive consistence results, in which it improved the moisture susceptibility and rutting resistance of the AC. Also result showed addition of fiber increased tensile strength and toughness which indicates that fibers have a potential to resist distresses that occur on a surface of the road as a result of heavy traffic loading. The overall results showed that addition of glass wool fiber in AC mixture is beneficial in improving properties of AC pavements.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated