Preprint
Review

Deciphering the Relationships Among Enzymatic Systems and Virulence of Beauveria bassiana: A Review

Altmetrics

Downloads

462

Views

723

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 September 2020

Posted:

29 September 2020

You are already at the latest version

Alerts
Abstract
Intensive crop production and extensive use of harmful synthetic chemical pesticides create numerous socio-economic problems worldwide. Therefore, sustainable solutions are needed for insect pest control, such as biological control agents. The fungal insect pathogen Beauveria bassiana has shown considerable potential as a biological control agent against a broad range of insects. The insights into virulence mechanism of B. bassiana is essential to show the robustness of its use. B. bassiana has several determinants of virulence, including the production of cuticle-degrading enzymes (CDEs), such as proteases, chitinases, and lipases. CDEs are essential in the infection process as they hydrolyze the significant components of the insect's cuticle. Moreover, B. bassiana has evolved effective antioxidant mechanisms that include enzyme families that act as ROS scavengers, e.g., superoxide dismutases, catalases, peroxidases, and thioredoxins. In B. bassiana, the number of CDEs and antioxidant enzymes characterized in recent years. The enzymatic activities are crucial for the biological control potential and significantly advanced our understanding of the infection mechanism of B. bassiana. This review focuses on the progress detailed in the studies of these enzymes and provides an overview of enzymatic activities and their contributions to virulence.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated