A peer-reviewed article of this preprint also exists.
Abstract
Previous studies generally reckon that the full converter-base wind power generation (FCWG) is a ’decoupled’ power source from the grid, which hardly participates in electromechanical oscillations. However, it is found recently that strong interaction could be induced which might incur severe resonance incidents in electromechanical dynamic timescale. In this paper, the participation of FCWG in electromechanical dynamics is extensively investigated, and particularly, an unusual transition of electromechanical oscillation mode (EOM) is uncovered for the first time. The detailed mathematical models of open-loop and closed-loop power systems are firstly established, and modal analysis is employed to quantify the FCWG participation in electromechanical dynamics, with two new mode identification criteria, i.e., FCWG dynamics correlation ratio (FDCR) and quasi-electromechanical loop correlation ratio (QELCR). On this basis, the impact of different wind penetration levels and controller parameter settings on the participation of FCWG is investigated. It is revealed that if an FOM has a similar oscillation frequency to the system EOMs, there is a high possibility to induce strong interactions between FCWG dynamics and system electromechanical dynamics of the external power systems. In this circumstance, an interesting phenomenon may occur that an EOM may be dominated by FCWG dynamics, and hence is transformed into a quasi-EOM, which actively involves the participation of FCWG quasi-electromechanical state variables.
Keywords:
Subject:
Engineering - Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.