Preprint
Article

Rheological and Component Characterization of an Innovative Bio-Binder Using Guayule Resin in Partial and Entire Asphalt Replacement

Altmetrics

Downloads

294

Views

180

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

02 October 2020

Posted:

05 October 2020

You are already at the latest version

Alerts
Abstract
Asphalt cement will not last for a long time as the world encounters a diminishment in the crude oil. For sustainable, flexible pavement development, new resources can provide a contribution to replace it partially or entirely. In this study, asphalt was partially and entirely replaced by guayule resin as a bioresource by-product, extracted during the guayule natural rubber production. Crumb rubber modifier (CRM) was used as an asphalt enhancer. The Superpave grading system was followed at high, intermediate, and low temperatures to evaluate such innovative binder for rutting, fatigue, and thermal cracking, respectively, in addition to viscosity. Therefore, the original, short-term aging and long-term aging were simulated using tank, rolling thin film oven, and pressure aging vessel materials. Additionally, component analysis using Fourier-transform infrared spectroscopy was provided to link the rheological properties with the chemical changes. Outcomes showed a relatively much lower viscosity of guayule in the same high-temperature asphalt grade indicating savings in plant energy consumption and reduced environmental emissions. CRM enhanced guayule, but not as much as asphalt, proven by polymeric component migration through liquid binder. This enhancement was reflected in the rheological performance besides other factors. As-received guayule seems to have high oxygen content proven by strong absorption peak intensities of oxidative bonds (e.g., Carbonyl and sulfoxide). Such pre-oxidation was negatively reflected in the intermediate- and low-temperature performance of guayule and guayule-based binders. However, the investigated guayule had potential to compensate for asphalt replacement in the presence of CRM by 23–42% by weight of blend.
Keywords: 
Subject: Engineering  -   Chemical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated