Preprint
Article

AE-RTISNet: Aeronautics Engine Radiographic Testing Inspection System Net with Improved Fast Region-based Convolutional Neural Networks Framework

Altmetrics

Downloads

340

Views

160

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

02 October 2020

Posted:

05 October 2020

You are already at the latest version

Alerts
Abstract
To ensure the safety in aircraft flying, we aim use of the deep learning methods of nondestructive examination with multiple defect detection paradigms for X-ray image detection posed. The use of the Fast Region-based Convolutional Neural Networks (Fast R-CNN) driven model seeks to augment and improve existing automated Non-Destructive Testing (NDT) diagnosis. Within the context of X-ray screening, limited numbers insufficient types of X-ray aeronautics engine defect data samples can thus pose another problem in training model tackling multiple detections perform accuracy. To overcome this issue, we employ a deep learning paradigm of transfer learning tackling both single and multiple detection. Overall the achieve result get more then 90% accuracy based on the AE-RTISNet retrained with 8 types of defect detection. Caffe structure software to make networks tracking detection over multiples Fast R-CNN. We consider the AE-RTISNet provide best results to the more traditional multiple Fast R-CNN approaches simpler translate to C++ code and installed in the Jetson™ TX2 embedded computer. With the use of LMDB format, all images using input images of size 640 × 480 pixel. The results scope achieves 0.9 mean average precision (mAP) on 8 types of material defect classifiers problem and requires approximately 100 microseconds.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated