Preprint
Article

Prediction of Wind Speed Using Hybrid Techniques. Three locations: Colombia, Ecuador and Spain

Altmetrics

Downloads

223

Views

161

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 September 2020

Posted:

05 October 2020

You are already at the latest version

Alerts
Abstract
This paper presents a methodology to calculate day-ahead wind speed predictions based on historical measurements done by weather stations. The methodology was tested for three locations: Colombia, Ecuador, and Spain. The data is input into the process in two ways: 1) as a single time series containing all measurements, and 2) as twenty-four separate parallel sequences, corresponding to the values of wind speed at each of the 24 hours in the day over several months. The methodology relies on the use of three non-parametric techniques: Least-Squares Support Vector Machines, Empirical Mode Decomposition, and the Wavelet Transform. Also, the traditional and simple Auto-Regressive model is applied. The combination of the aforementioned techniques results in nine methods for performing wind prediction. Experiments using a MATLAB implementation showed that the Least-squares Support Vector Machine using data as a single time series outperformed the other combinations, obtaining the least mean square error.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated