Preprint
Article

In Silico Analysis of Some Phytochemicals as Potent Anti-tubercular Agents Targeting Mycobacterium tuberculosis RNA Polymerase and InhA Protein

Altmetrics

Downloads

392

Views

410

Comments

0

Submitted:

04 October 2020

Posted:

05 October 2020

You are already at the latest version

Alerts
Abstract
Tuberculosis (TB) is a contagious disease, caused by Mycobacterium tuberculosis (MTB) that has infected and killed a lot of people in the past. At present treatments against TB are available at a very low cost. Since these chemical drugs have many adverse effects on health, more attention is now given on the plant-derived phytochemicals as potential agents to fight against TB. In this study, 5 phytochemicals, 4-hydroxybenzaldehyde, benzoic acid, bergapten, psoralen, and p-hydroxybenzoic acid, are selected to test their potentiality, safety, and efficacy against two potential targets, the MTB RNA polymerase and enoyl-acyl carrier protein (ACP) reductase, the InhA protein, using various tools of in silico biology. The molecular docking experiment, drug-likeness property test, ADME/T-test, P450 SOM prediction, pharmacophore mapping, and modeling, solubility testing, DFT calculations, and PASS prediction study had confirmed that all the molecules had the good potentiality to inhibit the two targets. However, two agents, 4-hydroxybenzaldehyde and bergapten were considered as the best agents among the five selected agents and they also showed far better results than the two currently used drugs, that function in these pathways, rifampicin (MTB RNA polymerase) and isoniazid (InhA protein). These two agents can be used effectively to treat tuberculosis.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated