Preprint
Article

Characterization of Pathogen Air-Borne Inoculum Density by Information Theoretic Analysis of Spore Trap Time Series Data

Altmetrics

Downloads

210

Views

196

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

10 October 2020

Posted:

12 October 2020

You are already at the latest version

Alerts
Abstract
Air sampling using vortex air samplers combined with species specific amplification of pathogen DNA, was carried out over two years in four or five locations in the Salinas Valley of California. The resulting time series data for the abundance of pathogen DNA trapped per day displayed complex dynamics with features of both deterministic (chaotic) and stochastic dynamics. Methods of nonlinear time series analysis developed for the reconstruction of low dimensional attractors provided new insights into the complexity of the pathogen abundance data, but also indicated that practicality may limit the capacity for definitively classifying the dynamics of air borne plant pathogen inoculum. Over the two years of the study five location/year combinations were classified as having stochastic linear dynamics and four were not. Calculation of entropy values for either the number of pathogen DNA copies or for a binary string indicating the pathogen abundance data were increasing or not, revealed (1) some robust differences in the dynamics between seasons that were not obvious in the time series data themselves, and also (2) that the series were almost all at their theoretical maximum entropy value when considered from the simple perspective of whether instantaneous change along the sequence is positive or not.
Keywords: 
Subject: Biology and Life Sciences  -   Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated