Preprint
Article

Possible Early Generation of Physiological Helical Flow Could Benefit the Triflo Trileaflet Heart Valve Prosthesis Compared to Bileaflet Valves

Altmetrics

Downloads

215

Views

175

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

15 October 2020

Posted:

16 October 2020

You are already at the latest version

Alerts
Abstract
Background - Physiological helical flow in the ascending aorta has been well documented in the last two decades, accompanied by discussions on possible physiological benefits of such axial swirl. Recent 4D-MRI studies on healthy volunteers have shown indication of early generation of helical flow, early in the systole and already close to the valve plane. Objectives - Firstly, the aim of the study is to investigate the hypothesis of premature swirl existence in the ventricular outflow tract leading to already helical flow in the valve plane, and second to investigate the possible impact of two different mechanical valves design on the preservation of this early helical flow and its subsequent hemodynamic consequences. Methods - We use a pulse duplicator with an aortic arch and High Speed Particle Image Velocimetry to document the flow evolution in the systolic cycle. The pulse-duplicator is modified with a swirl-generating insert to generate early helical flow in the valve plane. Special focus is laid on the interaction of such helical flow with different designs of mechanical prosthetic heart valves, comparing a classical bileaflet mechanical heart valve, the St Jude Medical Regent valve (SJM Regent BMHV) with the Triflo trileaflet mechanical heart valve T2B version (Triflo TMHV). Results – When the swirl-generator is inserted, a vortex is generated in the core flow demonstrating early helical flow in the valve plane, similar as observed in the recent 4-D-MRI study taken for comparison. For the Triflo trileaflet valve, the early helical flow is not obstructed in the central orifice, similar as in the case of the natural valve. Conservation of angular momentum leads to radial expansion of the core flow and flattening of the axial flow profile downstream in the arch. Furthermore, the early helical flow helps to overcome separation at the outer and inner curvature. In contrast, the two parallel leaflets for the bileaflet valve impose a flow straightener effect, annihilating the angular momentum with negative impact on kinetic energy of the flow. Conclusion - The results imply better hemodynamics for the Triflo trileaflet valve based on hydrodynamic arguments under the discussed hypothesis. In addition, it makes the Triflo valve a better candidate for replacements in patients with pathological generation of nonaxial velocity in ventricle outflow tract.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated