Preprint
Article

Distribution of carbon and nitrogen as indictors of environmental significance in coastal sediments of Weizhou Island, Beibu Gulf

Altmetrics

Downloads

197

Views

162

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 October 2020

Posted:

27 October 2020

You are already at the latest version

Alerts
Abstract
Carbon and nitrogen contents and their isotopic components and AMS radiocarbon dating ages were measured for 57 coastal sediments from Weizhou Island to analyze the distribution of total inorganic carbon (TIC) and its carbon and oxygen isotopic components (δ13Ccarb and δ18Ocarb), total organic carbon (TOC) and total nitrogen (TN) contents and their stable isotopic components (δ13CTOC and δ15NTN) and environmental significance. The results showed that the oldest age of coastal sediments on Weizhou Island was 2750 cal. a BP, and the average TIC contents of A1, A2, B1, C1, and D1 in the intertidal zone were all greater than 5%, where δ13Ccarb and δ18Ocarb were enriched, while the TIC contents in A3, C2, and D2 of the supra-tidal zone were low, where δ13Ccarb and δ18Ocarb were depleted. Moreover, TIC decreased sharply from the estuary to upstream region in the C1-C2 section. The average C/N ratio was 7.02, and δ13CTOC and δ15NTN were between -14.96‰~-27.26‰ and -14.38‰~4.12‰, respectively. These measurements indicated that the TIC in coastal sediments mainly came from seawater. A1, A2, and B1 in the northern intertidal zone exhibited organic terrestrial signals because of C3 and C4 plant inputs, which proved that the important source of the northern coast of Weizhou Island came from the island. The lacustrine facies deposits were mainly distributed in the upper reaches of the river, the northern coastline was rapidly advancing toward the sea, and part of the southwestern coastal sediments rapidly accumulated to the shore under the influence of a storm surge. The relative sea level of the Weizhou Island area has continuously declined at a rate of approximately 2.07 mm/a, using beach rock as a marker, since the Holocene.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated