Preprint
Communication

Visual Analytics on Biomedical Dark Data

Altmetrics

Downloads

288

Views

343

Comments

0

This version is not peer-reviewed

Submitted:

27 October 2020

Posted:

28 October 2020

You are already at the latest version

Alerts
Abstract
Over the years, there has been a significant rise in the world's scientific knowledge. However, most of it lacks structure and is often termed as Dark Data. Both humans and expert systems have continually faced difficulty in analyzing and comprehending such overwhelming amounts of information which is crucial in solving several real-world problems. Information and data visualization techniques proffer a promising solution to explore such data by allowing quick comprehension of information, the discovery of emerging trends, identification of relationships and patterns, etc. In this tutorial, we utilize the rich corpus of PubMed comprising of more than 30 million citations from biomedical literature to visually explore and understand the underlying key-insights using various information visualization techniques. With this study, we aim to diminish the limitation of human cognition and perception in handling and examining such large volumes of data by speeding up the process of decision making and pattern recognition and enabling decision-makers to fully understand data insights and make informed decisions.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated