Preprint
Article

Optimising Embodied Energy and Thermal Performance of Thermal Insulation in Building Envelopes Via an Automated Building Information Modelling (BIM) Tool

Altmetrics

Downloads

446

Views

208

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

31 October 2020

Posted:

02 November 2020

You are already at the latest version

Alerts
Abstract
Insulation systems for the floor, roof and external walls play a prominent role in providing a thermal barrier for the building envelope. Design decisions made for the insulation material type and thickness can alleviate potential impacts on the embodied energy and improve the building thermal performance. This design problem is often addressed using a BIM-integrated optimisation approach. However, one major weakness lies in the current studies is that BIM is merely used as the source for design parameters input. This study proposes a BIM-based envelope insulation optimisation design framework using a common software Revit to find the trade-off between the total embodied energy of the insulation system and the thermal performance of the envelope by considering the material type and thickness. In addition, the framework also permits data visualisation in a BIM environment, and subsequent material library mapping together with instantiating the optimal insulation designs. The framework is tested on a case study based in Sydney, Australia. By analysing sample designs from the Pareto front, it is found that slight improvement in the thermal performance (1.3399 to 1.2112 GJ/m2) would cause the embodied energy to increase by more than 50 times.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated