Preprint
Article

Generative Model for Skeletal Human Movements based on conditional DC-GAN applied to pseudo-images

Altmetrics

Downloads

427

Views

179

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 October 2020

Posted:

02 November 2020

You are already at the latest version

Alerts
Abstract
Generative models for images, audio, text and other low-dimension data have achieved great success in recent years. Generating artificial human movements can also be useful for many applications, including improvement of data augmentation methods for human gesture recognition. The object of this research is to develop a generative model for skeletal human movement, allowing to control the action type of generated motion while keeping the authenticity of the result and the natural style variability of gesture execution. We propose to use a conditional Deep Convolutional Generative Adversarial Network (DC-GAN) applied to pseudo-images representing skeletal pose sequences using Tree Structure Skeleton Image format. We evaluate our approach on the 3D-skeleton data provided in the large NTU RGB+D public dataset. Our generative model can output qualitatively correct skeletal human movements for any of its 60 action classes. We also quantitatively evaluate the performance of our model by computing Frechet Inception Distances, which shows strong correlation to human judgement. Up to our knowledge, our work is the first successful class-conditioned generative model for human skeletal motions based on pseudo-image representation of skeletal pose sequences.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated