Abstract
A novel hybrid cobalt phosphite, (H2DAB)[Co(H2PO3)4]·2H2O, has been synthesized by using slow evaporation method, in the presence of cobalt nitrate, phosphorous acid and 1,4- dia-minobutane (DAB= 1,4- diaminobutane) as a structure-directing agent. Single crystal X-ray diffraction analysis showed that the compound crystallizes in the P-1(n.2) triclinic space group, with the following unit cell parameters (Å, °) a = 5.4814 (3), b = 7.5515 (4), c = 10.8548 (6), α = 88.001 (4), β = 88.707 (5), γ = 85.126 (5), and V= 447.33 (4) Å3. The crystal structure was built up from cor-ner-sharing [CoO6] octahedra, forming chains parallel to [001], which are interconnected by H2PO3 pseudo-tetrahedral units. The deprotonated cations, residing between the parallel chains, interacted with the inorganic moiety via hydrogen bonds leading thus to the formation of the 3D crystal structure. The Fourier transform infrared spectrum showed characteristic bands corresponding to the phosphite group and the organic amine. The thermal behavior of the compound consisted mainly of the loss of its organic moiety and the water molecules. The biological tests exhibited significant activity against Candida albicans and Escherichia coli strains in all used concentrations, while less inhibitory activity was pronounced against Staphylococcus epidermidis and Saccharomyces cerevisiae, and in the case of multi-cellular organisms, no activity against the nematode model Steinernema feltiae was detected.