Preprint
Article

Research on Milling Tool Wears Prediction based on 3-D Finite Element Process Simulation

Altmetrics

Downloads

228

Views

199

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 November 2020

Posted:

04 November 2020

You are already at the latest version

Alerts
Abstract
In the process of metal cutting, the anti-wear performance of the tool determines the life of the tool and affects the surface quality of the workpiece. The finite element simulation method can directly show the tool wear state and morphology, but due to the limitations of the simulation time and complex boundary conditions, it has not been commonly used in tool life prediction. Based on this, a tool wear model was established on the platform of a finite element simulation software for the cutting process of titanium alloy TC4 by end milling. The key technique is to embed different types of tool wear models into the finite element model in combination with the consequent development technology. The effectiveness of the tool wear model is validated by comparing the experimental results with the simulation results. At the same time, in order to quickly predict the tool life, an empirical prediction formula of tool wear was established, and the change course of tool wear under time change was obtained.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated