Preprint
Review

Secret Key Agreement with Physical Unclonable Functions: An Optimality Summary

Altmetrics

Downloads

219

Views

208

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

04 November 2020

Posted:

05 November 2020

You are already at the latest version

Alerts
Abstract
We address security and privacy problems for digital devices and biometrics from an information-theoretic optimality perspective, where a secret key is generated for authentication, identification, message encryption/decryption, or secure computations. A physical unclonable function (PUF) is a promising solution for local security in digital devices and this review gives the most relevant summary for information theorists, coding theorists, and signal processing community members who are interested in optimal PUF constructions. Low-complexity signal processing methods such as transform coding that are developed to make the information-theoretic analysis tractable are discussed. The optimal trade-offs between the secret-key, privacy-leakage, and storage rates for multiple PUF measurements are given. Proposed optimal code constructions that jointly design the vector quantizer and error-correction code parameters are listed. These constructions include modern and algebraic codes such as polar codes and convolutional codes, both of which can achieve small block-error probabilities at short block lengths, corresponding to a small number of PUF circuits. Open problems in the PUF literature from a signal processing, information theory, coding theory, and hardware complexity perspectives and their combinations are listed to stimulate further advancements in the research on local privacy and security.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated