Preprint
Article

Decoherence and Recurrences in a Large Ferromagnetic $F = 1$ Spinor Bose-Einstein Condensate

Altmetrics

Downloads

263

Views

173

Comments

0

Submitted:

10 November 2020

Posted:

12 November 2020

You are already at the latest version

Alerts
Abstract
Decoherence with recurrences appear in the dynamics of the one-body density matrix of an $F = 1$ spinor Bose-Einstein condensate, initially prepared in coherent states, in the presence of an external uniform magnetic field and within the single mode approximation. The phenomenon emerges as a many-body effect of the interplay of the quadratic Zeeman effect, that breaks the rotational symmetry, and the spin-spin interactions. By performing full quantum diagonalizations very accurate time evolution of large condensates are analyzed, leading to heuristic analytic expressions for the time dependence of the density matrix, in the weak and strong interacting regimes. We are able to find accurate analytical expressions for both the decoherence and the recurrence times, in terms of the number of atoms and strength parameters, that show remarkable differences depending on the strength of the spin-spin interactions. We discuss the nature of these limits in the light of the thermodynamic limit.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated