Preprint
Review

Seagrass Ecosystems of India as Bioindicators of Trace Elements

Altmetrics

Downloads

463

Views

322

Comments

0

Submitted:

12 November 2020

Posted:

13 November 2020

You are already at the latest version

Alerts
Abstract
Seagrasses are considered as efficient bioindicators of coastal trace element contamination. This chapter provides an overview on the trace element accumulation, tolerance and biomonitoring capacity of the various seagrass species distributed along the coast of India. A total of 10 trace elements are reported in seagrasses, 11 in sediment and nine in the water column from India. From the 11 seagrass species studied, 60% of research have focused on Syringodium isoetifolium, Cymodocea serrulata, Cymodocea rotundata and Halophila ovalis. 78% of seagrass trace element research in India is from Palk bay and Gulf of Mannar (GOM), Tamil Nadu and 16% from Lakshadweep Islands. Out of the 10 trace elements, Cd, Cu, Pb and Zn are the most studied in seagrass, Fe, Mn, Ni and Pb in sediment and Cu, Fe, Mg, Ni and Zn in the water column. Accumulation capacity of various trace elements in seagrass were species-specific. S. isoetifolium have the highest concentration of Cd and Mg at Palk bay and Lakshadweep Islands respectively. The concentration of Cu was higher in C. serrulata at GOM. Halodule uninervis and Halophila decipens have the highest concentration of Co, and Cr, Ni, Pb and Zn from Lakshadweep Islands. The highest concentration of Fe and Mn were highest in Halophila beccarii and H. ovalis from the coast of Goa and Palk bay respectively. Threshold levels (>10 mg L-1) of Cd, Cu, Pb and Zn were observed for C. serrulata, H. ovalis, H. uninervis and T. hemprichii, that can affect the Photo System -II of these seagrasses and exert cellular stress leading to seagrass loss and die-off. High concentration of these elements can exert negative impacts on seagrass associated trophic assemblages and ecosystem functioning. Seagrasses of India can be utilized as bioindicators of coastal trace element contamination but the associated toxicity and human health risks needs further investigation.
Keywords: 
Subject: Biology and Life Sciences  -   Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated