Preprint
Article

Explainable AI Framework for Multivariate Hydrochemical Time Series

Altmetrics

Downloads

297

Views

226

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

15 November 2020

Posted:

17 November 2020

You are already at the latest version

Alerts
Abstract
The understanding of water quality and its underlying processes is important for the protection of aquatic environments enabling the rare opportunity of access to a domain expert. Hence, an explainable AI (XAI) framework is proposed that is applicable to multivariate time series resulting in explanations that are interpretable by a domain expert. The XAI combines in three steps a data-driven choice of a distance measure with explainable cluster analysis through supervised decision trees. The multivariate time series consists of water quality measurements, including nitrate, electrical conductivity, and twelve other environmental parameters. The relationships between water quality and the environmental parameters are investigated by identifying similar days within a cluster and dissimilar days between clusters. The XAI does not depend on prior knowledge about data structure, and its explanations are tendentially contrastive. The relationships in the data can be visualized by a topographic map representing high-dimensional structures. Two comparable decision-based XAIs were unable to provide meaningful and relevant explanations from the multivariate time series data. Open-source code in R for the three steps of the XAI framework is provided.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated