Preprint
Article

Timoshenko Beam Theory: Exact Solution for First-Order Analysis, Second-Order Analysis, and Stability Using a Moment-Shear Force-Curvature Relationship

Altmetrics

Downloads

16779

Views

6226

Comments

1

This version is not peer-reviewed

Submitted:

14 July 2021

Posted:

15 July 2021

You are already at the latest version

Alerts
Abstract
This paper presents an exact solution to the Timoshenko beam theory (TBT) for first-order analysis, second-order analysis, and stability. The TBT covers cases associated with small deflections based on shear deformation considerations, whereas the Euler–Bernoulli beam theory (EBBT) neglects shear deformations. Thus, the Euler–Bernoulli beam is a special case of the Timoshenko beam. The moment-curvature relationship is one of the governing equations of the EBBT, and closed-form expressions of efforts and deformations are available in the literature. However, neither an equivalent to the moment-curvature relationship of EBBT nor closed-form expressions of efforts and deformations can be found in the TBT. In this paper, a moment-shear force-curvature relationship, the equivalent in TBT of the moment-curvature relationship of EBBT, was presented. Based on this relationship, first-order and second-order analyses were conducted, and closed-form expressions of efforts and deformations were derived for various load cases. Furthermore, beam stability was analyzed and buckling loads were calculated. Finally, first-order and second-order element stiffness matrices were determined.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated