Preprint
Article

Development and Mechanical Testing of Porous-Lightweight Geopolymer Mortar

Altmetrics

Downloads

282

Views

241

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

17 November 2020

Posted:

18 November 2020

You are already at the latest version

Alerts
Abstract
In this study, a novel porous geopolymer mortar (GP) was produced and tested experimentally. Industrial waste materials/by-products were used as constituents of the GP, along with dune sand. One sample was produced as a control sample for benchmarking. For the rest of the samples, 15%, 30%, and 45% by volume, the solid constituents were replaced with expanded polystyrene foam (EPS) beads. These mortar samples were heat cured to depolymerize the EPS to cause porosity inside the samples. Indoor experiments were conducted to evaluate the response of produced porous GP to high heat flux. The porous samples were able to reduce heat transmission across the opposite surfaces. Induced porosity resulted in a decrement in compressive strength from 77.2 MPa for the control sample to 15.8 MPa for 45% porous sample. However, the limit lies within the standards for partitioning walls in buildings and pavements in urban areas to absorb rainwater.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated