Preprint
Article

On the Combined Role of Strong and Electroweak Interactions in Understanding Nuclear Binding Energy Scheme

Altmetrics

Downloads

362

Views

300

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

25 December 2020

Posted:

25 December 2020

You are already at the latest version

Alerts
Abstract
An attempt is made to model the atomic nucleus as a combination of bound and free or unbound nucleons. Due to strong interaction, bound nucleons help in increasing nuclear binding energy and due to electroweak interaction, free or unbound nucleons help in decreasing nuclear binding energy. In this context, with reference to proposed 4G model of final unification and strong interaction, recently we have developed a unified nuclear binding energy scheme with four simple terms, one energy coefficient of 10.1 MeV and two small numbers 0.0016 and 0.0019. In this paper, by eliminating the number 0.0019, we try to fine tune the estimation procedure of number of free or unbound nucleons pertaining to the second term with an energy coefficient of 11.9 MeV. It seems that, some kind of electroweak interaction is playing a strange role in maintaining free or unbound nucleons within the nucleus. It is possible to say that, strong interaction plays a vital role in increasing nuclear binding energy and electroweak interaction plays a vital role in reducing nuclear binding energy. Interesting observation is that, Z can be considered as a characteristic representation of range of number of bound isotopes of Z. For medium, heavy and super heavy atoms, beginning and ending mass numbers pertaining to bound states can be understood with 2Z+0.004Z^2 and 3Z+0.004Z^2 respectively. With further study, neutron drip lines can be understood. Based on this kind of data fitting procedure and by considering the mass ratio of pions and electroweak bosons, existence of our 4G model of electroweak fermion of rest energy 584.725 GeV can be confirmed confidently.
Keywords: 
Subject: Physical Sciences  -   Nuclear and High Energy Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated