Preprint
Article

An Improved of Fault Diagnosis Using 1D-Convolutional Neural Network Model

Altmetrics

Downloads

234

Views

189

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 November 2020

Posted:

23 November 2020

You are already at the latest version

Alerts
Abstract
The diagnosis of a rolling bearing for monitoring its status is critical for maintaining industrial equipment using rolling bearings. The traditional method of diagnosing faults of the rolling bearing has low identification accuracy, which needs artificial feature extraction to enhance the accuracy. 1D-CNN method not only can diagnose bearing faults accurately but also overcome shortcomings of the traditional methods. Different from machine learning and other deep learning models, the 1D-CNN method does not need pre-processing one-dimensional data of rolling bearing’s vibration. Thus, it enhances the processing speed and improves the network structure to have a reasonable design for small sample data sets. This study proposes and tests a 1D-CNN method for diagnosing rolling bearings. By introducing the dropout operation, the method obtains high accuracy and improves the generalizing ability. The experimental results show 99.52% of the average accuracy under a single load and 98.26% under different loads.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated