Preprint
Article

Cluster Flows and Multiagent Technology

Altmetrics

Downloads

172

Views

156

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

27 November 2020

Posted:

30 November 2020

You are already at the latest version

Alerts
Abstract
Multiagent technologies give a new way to study and control complex systems. Local interactions between agents often lead to group synchronization also known as clusterization, which usually is a more rapid process in comparison with relatively slow changes in external environment. Usually, the goal of system control is defined by the behaviour of a system on long time intervals. When these time intervals are much longer than the time of cluster formation, clusters may be considered as new variables in a ``slow'' time model. We call such variables ``mesoscopic'' to emphasize their scale laying between the level of the whole system (macroscopic scale) and the level of individual agents (microscopic scale). Thus, it allows us to reduce significantly the dimensionality of a system by omitting considerations of each separated agent, so that we may hope to reduce the required amount of control inputs. Thus, we are often able to consider a system as a collection of ``flowing'' (morphing) clusters emerged form behaviour of a huge amount of individual agents. In this paper, we contrast such approach to the one where a system is considered as a network of elementary agents. We develop a mathematical framework for analysis of cluster flows in multiagent networks and use it to analyze the Kuramoto model as an attracting example of a complex networked system. In this model, a clusterization leads to sparse representation of dynamic trajectories in the whole quantized state space. With that in mind, compressive sensing allows to restore the trajectories in a high-dimensional discrete state space based on significantly lower amount of randomized integral mesoscopic observations. We propose a corresponding algorithm of quantized dynamic trajectory compression. It could allow us to efficiently transmit the state space data to a data center for further control synthesis. The theoretical results are illustrated for a simulated multiagent network with multiple clusters.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated