Considering the significant advancements in autonomous vehicle technology, research in this field is of interest to researchers. To automatic parking, controlling steer angle, gas hatch, and brakes need to be learned. Due to the increase in the number of cars and road traffic, car parking space has decreased. Its main reason is information error. Because the driver does not receive the necessary information or receives it too late, he cannot take appropriate action against it. This paper uses two phases: the first phase, for goal coordination, was used genetic algorithms and the Cuckoo search algorithm was used to increase driver information from the surroundings. Using the Cuckoo search algorithm and considering the limitations, it increases the driver’s level of information from the environment. Also, by exchanging information through the application, it enables the information to reach the driver much more quickly and the driver reacts appropriately at the right time. The suggested protocol is called the MODM-based solution. Here, the technique is assessed through extensive simulations performed in the NS-3 environment. Based on the simulation outcomes, it is indicated that the parking system performance metrics are enhanced based on the detection rate, false-negative rate, and false-positive rate.
Keywords:
Subject:
Engineering - Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.