Preprint
Article

4D Einstein-Gauss-Bonnet Gravity Coupled with Nonlinear Electrodynamics

Altmetrics

Downloads

191

Views

200

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

01 December 2020

Posted:

02 December 2020

You are already at the latest version

Alerts
Abstract
An exact spherically symmetric and magnetically charged black hole solution in 4D Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics (NED) is obtained. The NED Lagrangian is given by ${\cal L}_{NED} = -{\cal F}/(1+\sqrt[4]{2\beta{\cal F}})$, where ${\cal F}$ is the field invariant. We study the thermodynamics calculating the Hawking temperature and the heat capacity of the black hole. The phase transitions take place when the Hawking temperature has an extremum and the heat capacity is singular. We demonstrate that black holes are thermodynamically stable in some range of event horizon radii where the heat capacity is positive. The BH shadow radii are calculated. It is shown that when increasing the nonlinearity parameter $\beta$ the BH shadow radius is decreased.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated