Preprint
Article

Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea to Excess Zinc

Altmetrics

Downloads

285

Views

195

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 December 2020

Posted:

02 December 2020

You are already at the latest version

Alerts
Abstract
The responses of the aromatic and medicinal plant Salvia sclarea (clary sage) to 900 µM Zn exposure for 8 days in a hydroponic culture were investigated. The tolerance mechanisms under excess Zn exposure were assessed by changes in nutrient uptake, photosynthetic characteristics and leaf structure. The uptake and the distribution of Zn, as well as some essential nutrient elements such as: Ca, Mg, Fe, Mn and Cu, were examined by inductively coupled plasma mass spectrometry (ICP-MS). The results revealed that Salvia sclarea is a Zn accumulator plant that tolerates significantly high toxic levels of Zn in the leaves by increasing the leaf content of Fe, Ca and Mn ions to protect the photosynthetic function and even stimulate photosystem I (PSI) and photosystem II (PSII) activities. Additionally, the leaf photosynthetic pigments and the total phenolic and anthocyanin content were also studied. Data showed that the exposure to excess Zn significantly increases the synthesis of phenolic compounds in the leaves which plays an important role in the Zn detoxification and protection against oxidative stress. Lipid peroxidation and electrolyte leakage in leaves used as clear indicators for heavy metal damage were slightly increased. All these data highlight that Salvia sclarea is an economically interesting plant for phytoextraction and/or phytostabilization of Zn contaminated soils.
Keywords: 
Subject: Biology and Life Sciences  -   Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated