This article has two objectives. Firstly, we will use the vector variational-like inequalities problems to achieve local approximate (weakly) efficient solutions of Vector Optimization Problem within the novel field of the Hadamard manifolds. Previously, we will introduce the concepts of generalized approximate geodesic convex functions and illustrate them with examples. We will see the minimum requirements under which critical points, solutions of Stampacchia and Minty weak variational-like inequalities and local approximate weakly efficient solutions can be identified, extending previous results from the literature for linear Euclidean spaces. Secondly, we will show an economical application, using again solutions of the variational problems to identify with Stackelberg equilibrium points on Hadamard manifolds and under geodesic convexity assumptions.
Keywords:
Subject: Computer Science and Mathematics - Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.