Preprint
Technical Note

The Oil and Vinegar Method

Altmetrics

Downloads

392

Views

203

Comments

0

This version is not peer-reviewed

Submitted:

10 December 2020

Posted:

13 December 2020

You are already at the latest version

Alerts
Abstract
Public key encryption methods are often used to create a digital signature, and where Bob has a public key and a private key. In order to prove his identity, he will encrypt something related to the message with his private key, and which can then be checked with his public key. The main current methods of public-key encryption include RSA and ECC (Elliptic Curve Cryptography), and which involve computationally difficult operations. But these operations have not been proven to be hard in an era of quantum computers. One well-known hard problem is the solving of quadratic equations with $m$ equations with $n$ variables. This is a known NP-hard problem, even in a world of quantum computers. These can be used as post-quantum signature schemes and which involve multivariate equations. In order to understand these methods, this paper outlines a simple example of implementing the oil and vinegar method, and where we have a number of unknown oil variables and a number of known vinegar variables, and where the vinegar variables help convert the hard problem into an easy one.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated