Preprint
Article

Apply VGGNet-Based Deep Learning Model of Vibration Data for Prediction Model of Gravity Acceleration Equipment

Altmetrics

Downloads

297

Views

153

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

24 December 2020

Posted:

25 December 2020

You are already at the latest version

Alerts
Abstract
Hypergravity accelerators are a type of large machinery used for gravity training or medical research. A failure of such large equipment can be a serious problem in terms of safety or costs. This paper proposes a prediction model that can proactively prevent failures that may occur in a hy-pergravity accelerator. The method proposed in this paper was to convert vibration signals to spectograms and perform classification training using a deep learning model. An experiment was conducted to evaluate the performance of the method proposed in this paper. A 4-channel accel-erometer was attached to the bearing housing, which is a rotor, and time-amplitude data were obtained from the measured values by sampling. The data were converted to a two-dimensional spectrogram, and classification training was performed using a deep learning model for four conditions of the equipment: Unbalance, Misalignment, Shaft Rubbing, and Normal. The ex-perimental results showed that the proposed method had a 99.5% F1-Score, which was up to 23% higher than the 76.25% for existing feature-based learning models.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated