Preprint
Article

Forecasting COVID-19 with Importance-Sampling and Path-Integrals

Altmetrics

Downloads

529

Views

541

Comments

1

This version is not peer-reviewed

Submitted:

01 January 2021

Posted:

04 January 2021

You are already at the latest version

Alerts
Abstract
Background: Forecasting nonlinear stochastic systems most often is quite difficult, without giving in to temptations to simply simplify models for the sake of permitting simple computations. Objective: Here, two basic algorithms, Adaptive Simulated Annealing (ASA) and path-integral codes PATHINT/PATHTREE (and their quantum generalizations qPATHINT/qPATHTREE) are offered to detail such systems. Method: ASA and PATHINT/PATHTREE have been effective to forecast properties in three disparate disciplines in neuroscience, financial markets, and combat analysis. Applications are described for COVID-19. Results: Results of detailed calculations have led to new results and insights not previously obtained. Conclusion: These 3 applications give strong support to a quite generic application of these tools to stochastic nonlinear systems.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated