Preprint
Article

Partition Quantitative Assessment (Pqa): A Quantitative Methodology to Assess the Embedded Noise in Clustered Omics and Systems Biology Data

Altmetrics

Downloads

181

Views

150

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 December 2020

Posted:

29 December 2020

You are already at the latest version

Alerts
Abstract
Identifying groups that share common features among datasets through clustering analysis is a typical problem in many fields of science, particularly in post-omics and systems biology research. In respect of this, quantifying how a measure can cluster or organize intrinsic groups is important since currently there is no statistical evaluation of how ordered is, or how much noise is embedded in the resulting clustered vector. Many of the literature focuses on how well the clustering algorithm orders the data, with several measures regarding external and internal statistical measures; but none measure has been developed to statistically quantify the noise in an arranged vector posterior a clustering algorithm, i.e., how much of the clustering is due to randomness. Here, we present a quantitative methodology, based on autocorrelation, to assess this problem.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated