Preprint
Article

Extending Quantum Probability from Real Axis to Complex Plane

Altmetrics

Downloads

265

Views

216

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

28 December 2020

Posted:

29 December 2020

You are already at the latest version

Alerts
Abstract
Probability is an open question in the ontological interpretation of quantum mechanics. It has been discussed in some trajectory interpretations such as Bohmian mechanics and stochastic mechanics. New questions arise when the domain of probability extends to the complex space, including the generation of complex trajectories, the definition of the complex probability, the relation of the complex probability to the real quantum probability, and so on. The complex treatment proposed here applies the optimal quantum guidance law to derive the stochastic differential (SD) equation governing the particle’s random motions in the complex plane. The ensemble of the complex quantum random trajectories (CQRTs) solved from the complex SD equation is used to construct the probability distribution ρc(t,x,y) of the particle’s position over the complex plane z=x+iy. The correctness of the obtained complex probability is confirmed by the solution of the complex Fokker-Planck equation. The significant contribution of the complex probability is that it can be used to reconstruct both quantum probability and classical probability, and to clarify their relationship. Although quantum probability and classical probability are both defined on the real axis, they are obtained by projecting complex probability onto the real axis in different ways. This difference explains why the quantum probability cannot exactly converge to the classical probability when the quantum number is large.
Keywords: 
Subject: Physical Sciences  -   Quantum Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated