Preprint
Article

HASPO: Harmony Search-based Parameter Optimization for Just-in-Time Software Defect Prediction in the Maritime Software

Altmetrics

Downloads

461

Views

162

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 December 2020

Posted:

31 December 2020

You are already at the latest version

Alerts
Abstract
Software is playing the most important role in recent vehicle innovation, and consequently the amount of software has been rapidly growing last decades. Safety-critical nature of ships, one sort of vehicles, makes Software Quality Assurance (SQA) has gotten to be a fundamental prerequisite. Just-In-Time Software Defect Prediction (JIT-SDP) aims to conduct software defect prediction (SDP) on commit-level code changes to achieve effective SQA resource allocation. The first case study of SDP in maritime domain reported feasible prediction performance. However, we still consider that the prediction model has still rooms for improvement since the parameters of the model are not optimized yet. Harmony Search (HS) is a widely used music-inspired meta-heuristic optimization algorithm. In this article, we demonstrated that JIT-SDP can produce the better performance of prediction by applying HS-based parameter optimization with balanced fitness value. Using two real-world datasets from the maritime software project, we obtained an optimized model that meets the performance criterion beyond baseline of previous case study throughout various defect to non-defect class imbalance ratio of datasets. Experiments with open source software also showed better recall for all datasets despite we considered balance as performance index. HS-based parameter optimized JIT-SDP can be applied to the maritime domain software with high class imbalance ratio. Finally, we expect that our research can be extended to improve performance of JIT-SDP not only in maritime domain software but also in open source software.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated