The cosmological constant problem is examined by taking an Einstein--scalar with a Higgs-type potential and scrutinizing the infrared structure induced by finite temperature effects. A variant optimal perturbation theory is implemented in the recently proposed quantum-gravitational framework. The optimized renormalized mass, i.e., the renormalized mass determined by the variant optimal perturbation theory, of the scalar field turns out to be on the order of the temperature. This shifts the cosmological constant problem to compatibility of the consequent perturbative analysis. The compatibility is guaranteed essentially by renormalization group invariance of physical quantities. We point out the resummation behind the invariance.
Keywords:
Subject: Physical Sciences - Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.