Preprint
Article

VEGF Detection via Simplified FLISA Using a 3D Microfluidic Disk Platform

Altmetrics

Downloads

333

Views

328

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 January 2021

Posted:

06 January 2021

You are already at the latest version

Alerts
Abstract
Fluorescence-linked immunosorbent assay (FLISA) is a commonly used, quantitative technique for detecting biochemical based on antigen–antibody binding reactions using a well-plate platform. With the developments in the manufacturing technology of microfluidic systems, FLISA can be implemented onto microfluidic disk platforms, which allows the detection of trace biochemical with high resolutions. Apart from requiring a lower proportion of reagent (1/10), this method also reduces the time required for the entire process to less than an hour. The incubation process involves antigen–antibody binding reactions as well as the binding of fluorogenic substrates to target proteins. The protocol for FLISA on a microfluidic platform necessitates the appropriate execution of liquid reagent movements during each step in order to ensure sufficient binding reactions. Herein, we propose a novel microfluidic disk comprising a 3D incubation chamber. Vascular endothelial growth factor as concentration with ng mL-1 is detected sequentially using a benchtop process employing this 3D microfluidic disk. The 3D microfluidic disk is implemented without requiring manual intervention or additional procedures for liquid control. During the incubation process, microbead movement is controlled through centrifugal force, generated due to disk rotation, and gravitational force via bead sedimentation on the sloped floor of the chamber.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated