Preprint
Article

Achilles: A Tool for Contact Angle Estimation from Molecular Dynamics Simulations

Altmetrics

Downloads

817

Views

512

Comments

0

This version is not peer-reviewed

Submitted:

07 January 2021

Posted:

08 January 2021

You are already at the latest version

Alerts
Abstract
In this work, a tool for estimating the contact angle from the molecular dynamics simulations is developed and presented. The tool (Achilles) can detect water droplet on hydrophobic and hydrophilic surfaces. The tool can reconstruct the droplets broken across the periodic boundaries. Further a neighbor density based accurate filter is used to find the droplet liquid vapor interface and a circle is fitted using it after removing the dense layers of water next to solid surface. This fitted circle is solved for contact angle and results are outputted in the form of graphical images and text. The entire content of the internal computations of the tool is broken down into 4 phases and users can monitor the outcomes at every phase through output images. The tool is tested using sample molecular dynamics results of water droplet on hydrophobic and hydrophilic surfaces. We believe this tool can be a good addition to the molecular dynamics simulation community who work on the interfacial physics, droplet evaporation, super hydrophobic surfaces, and wettability etc.
Keywords: 
Subject: Physical Sciences  -   Atomic and Molecular Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated