You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Review

Nanotechnology for Biosensors: A Review

Altmetrics

Downloads

331

Views

387

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

07 January 2021

Posted:

08 January 2021

You are already at the latest version

Alerts
Abstract
Biosensors are essential tools which have been traditionally used to monitor environmental pollution, detect the presence of toxic elements and biohazardous bacteria or virus in organic matter and biomolecules for clinical diagnostics. In the last couple of decades, the scientific community has witnessed their widespread application in the fields of military, health care, industrial process control, environmental monitoring, food-quality control, and microbiology. Biosensor technology has greatly evolved from the in vitro studies based on the biosensing ability of organic beings to the highly sophisticated world of nanofabrication enabled miniaturized biosensors. The incorporation of nanotechnology in the vast field of biosensing has led to the development of novel sensors and sensing mechanisms, as well as an increase in the sensitivity and performance of the existing biosensors. Additionally, the nanoscale dimension further assists the development of sensors for rapid and simple detection in vivo as well as the ability to probe single-biomolecules and obtain critical information for their detection and analysis. However, the major drawbacks of this include, but are not limited to potential toxicities associated with the unavoidable release of nanoparticles into the environment, miniaturization induced unreliability, lack of automation, and difficulty of integrating the nanostructured-based biosensors as well as unreliable transduction signals from these devices. Although the field of biosensors is vast, we intend to explore various nanotechnology enabled biosensors as part of this review article and provide a brief description of their fundamental working principles and potential applications.
Keywords: 
Subject: Engineering  -   Automotive Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated