Preprint
Article

Cannabis Yield, Potency, and Leaf Photosynthesis Respond Differently to Increasing Light Levels in an Indoor Environment

Altmetrics

Downloads

1463

Views

1778

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 January 2021

Posted:

08 January 2021

You are already at the latest version

Alerts
Abstract
Since the recent legalization of medical and recreational use of cannabis (Cannabis sativa L.) in many regions worldwide, there has been high demand for research to improve yield and quality. With the paucity of scientific literature on the topic, this study investigated the relationships between light intensity (LI) and photosynthesis, inflorescence yield, and inflorescence quality of cannabis grown in an indoor environment. After growing vegetatively for 2 weeks under a canopy-level photosynthetic photon flux density (PPFD) of ≈ 425 μmol·m-2·s-1 and an 18-h light/6-h dark photoperiod, plants were grown for 12 weeks in a 12-h light/12-h dark ‘flowering’ photoperiod under canopy-level PPFDs ranging from 120 to 1800 μmol·m-2·s-1 provided by light emitting diodes. Leaf light response curves varied both with localized (i.e., leaf-level) PPFD and temporally, throughout the flowering cycle. Therefore, it was concluded that the leaf light response is not a reliable predictor of whole- plant responses to LI, particularly crop yield. This may be especially evident given that dry inflorescence yield increased linearly with increasing canopy-level PPFD up to 1800 μmol·m-2·s-1, while leaf-level photosynthesis saturated well below 1800 μmol·m-2·s-1. The density of the apical inflorescence and harvest index also increased linearly with increasing LI, resulting in higher-quality marketable tissues and less superfluous tissue to dispose of. There were no LI treatment effects on cannabinoid potency, while there were minor LI treatment effects on terpene potency. Commercial cannabis growers can use these light response models to determine the optimum LI for their production environment to achieve the best economic return; balancing input costs with the commercial value of their cannabis products.
Keywords: 
Subject: Biology and Life Sciences  -   Plant Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated