Preprint
Article

Tag-Aware Recommender System Based on Deep Reinforcement Learning

This version is not peer-reviewed.

Submitted:

08 January 2021

Posted:

11 January 2021

You are already at the latest version

Abstract
Recently, the application of deep reinforcement learning in recommender system is flourishing and stands out by overcoming drawbacks of traditional methods and achieving high recommendation quality. The dynamics, long-term returns and sparse data issues in recommender system have been effectively solved. But the application of deep reinforcement learning brings problems of interpretability, overfitting, complex reward function design, and user cold start. This paper proposed a tag-aware recommender system based on deep reinforcement learning without complex function design, taking advantage of tags to make up for the interpretability problems existing in recommender system. Our experiment is carried out on MovieLens dataset. The result shows that, DRL based recommender system is superior than traditional algorithms in minimum error and the application of tags has little effect on accuracy when making up for interpretability. In addition, DRL based recommender system has excellent performance on user cold start problems.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

353

Views

352

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated