Recently, the application of deep reinforcement learning in recommender system is flourishing and stands out by overcoming drawbacks of traditional methods and achieving high recommendation quality. The dynamics, long-term returns and sparse data issues in recommender system have been effectively solved. But the application of deep reinforcement learning brings problems of interpretability, overfitting, complex reward function design, and user cold start. This paper proposed a tag-aware recommender system based on deep reinforcement learning without complex function design, taking advantage of tags to make up for the interpretability problems existing in recommender system. Our experiment is carried out on MovieLens dataset. The result shows that, DRL based recommender system is superior than traditional algorithms in minimum error and the application of tags has little effect on accuracy when making up for interpretability. In addition, DRL based recommender system has excellent performance on user cold start problems.
Keywords:
Subject: Computer Science and Mathematics - Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.