Preprint
Article

Polarization Anisotropies in Strain-Free, Asymmetric and Symmetric Quantum Dots Grown by Droplet Epitaxy

Altmetrics

Downloads

214

Views

265

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 January 2021

Posted:

14 January 2021

You are already at the latest version

Alerts
Abstract
We provide an extensive and systematic investigation of exciton dynamics in droplet epitaxial quantum dots comparing the cases of (311)A, (001) and (111)A surfaces. In spite of a similar s-shell exciton structure common to the three cases, the absence of a wetting layer for (311)A and (111)A samples leads to a larger carrier confinement with respect to (001), where a wetting layer is present. Moreover, this leads to a more pronounced dependence of the binding energies of s-shell excitons on the quantum dot size and to a strong anti-binding character of the positive charged exciton for smaller quantum dots. In-plane geometrical anisotropies of (311)A and (001) quantum dots lead to a large electron-hole fine interaction (fine structure splitting, FSS ~ 100 ueV) whereas for the three-fold symmetric (111)A counterpart this figure of merit is reduced of about one order of magnitude. In all these cases we do not observe any size dependence of the fine interactions. Heavy-hole/light-hole mixing is present in all the studied cases leading to a broad spread of linear polarization anisotropy (from 0 up to about 50%) irrespective of surface orientation (symmetry of the confinement), fine interactions and nanostructure size. These results are important for the further development of ideal single and entangled photon sources based on semiconductor quantum dots.
Keywords: 
Subject: Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated