Preprint
Article

Responses of Runoff and Soil Loss to Rainfall Regimes and Soil Conservation Measures on Cultivated Slopes in a Hilly Region, Northern China

Altmetrics

Downloads

215

Views

305

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 January 2021

Posted:

21 January 2021

You are already at the latest version

Alerts
Abstract
Cultivated land plays an important role in water and soil loss in the earth-rocky mountainous region, northern China, however, its responses to soil control measures and rainfall characteristics are still not fully understood. In this study, 85 erosive rainfall events in 2011-2019 were grouped into three types, and the responses of runoff and soil loss on five cultivated plots with different slopes in the upstream catchment of the Miyun Reservoir to soil conservation measures and rainfall regimes were evaluated. Results found that event-averaged runoff depths and soil loss rates on the five plots ranged from 7.05 mm to 0.03 mm and from 300.51 t km-2 to 0.37 t km-2 respectively, depending on rainfall regimes, soil conservation measures, and slope gradients. The high occurring frequency (i.e., 72.94%) rainfall regime A with short rainfall duration (RD), low rainfall amount (P), and high mean rainfall intensity (Im) yielded lower runoff depth and higher soil loss rate. Rainfall regime B with longer RD, and higher P and Im, however, produced higher rainfall depth and lower soil loss rate. Terraced plot had the highest runoff and soil loss reduction efficiencies of over 96.03%. Contour tillage had comparable sediment reduction efficiency to that of the terraced plot on gentle slopes (gradient less than 11.0%), while its runoff reduction efficiency was less than 13.11%. This study implies that in the Miyun Reservoir catchment and similar regions in the world, contour tillage should be promoted on gentle slopes, and terrace construction should be given enough attention since it can greatly reduce water quantity and cause water shortage in downstream catchments.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated