Preprint
Article

The Change P82L in the Rift Valley Fever Virus NSs Protein Confers Attenuation in Mice Not Related with a Type-I IFN Antagonistic Phenotype

Altmetrics

Downloads

230

Views

379

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

21 January 2021

Posted:

22 January 2021

You are already at the latest version

Alerts
Abstract
Rift valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes an important disease in ruminants, with great economic losses. The infection can be also transmitted to humans; therefore it is considered a major threat to both human and animal health. In a previous work, we described a novel RVFV variant selected in cell culture in the presence of the antiviral agent favipiravir that was highly attenuated in vivo. This variant displayed 24 amino acid substitutions in different viral proteins when compared to its parental viral strain, two of them located in the NSs protein that is known to be the major virulence factor of RVFV. By means of a reverse genetics system, in this work we have analyzed the effect that one of these substitutions, P82L, has in viral attenuation in vivo. Rescued viruses carrying this single amino acid change were clearly attenuated in BALB/c mice while their growth in an IFN-competent cell line as well as the production of IFN-β did not seem to be affected. However, the pattern of nuclear NSs accumulation was modified in cells infected with the mutant viruses. These results unveil a new RVFV virulence marker highlighting the multiple ways of NSs protein to modulate viral infectivity.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated