Understanding the equilibrium saturation level is crucial to Binder Jetting (BJ). Saturation level influences dimensional accuracy, print time, green strength, and final material properties. Improved understanding of the saturation level can reduce development time for new materials and improve existing processes in BJ. Attempts have been made to predict saturation levels of parts with simple calculations from droplet primitives and capillary pressure. There is, however, limited experimental validation for these methods and they do not include the impact of drop velocity and droplet spacing. This study incorporates the influences of drop velocity and droplet spacing on the saturation level of the part. Drop primitives of varying droplet velocity and droplet spacing were compared. Results show that velocity impacts the feasible parameter space.
Keywords:
Subject: Engineering - Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.