Binder Saturation, Layer Thickness, Drying Time and Their Effects on Dimensional Tolerance and Density of Cobalt Chrome- Tricalcium Phosphate Biocomposite
Traditional metals such as stainless steel, titanium and cobalt chrome are used in biomedical applications (implants, scaffolds etc.) but suffer from issues such as osseointegration and compatibility with existing bone. One way to improve traditional biomaterials is to incorporate ceramics with these metals so that their mechanical properties can be similar to cortical bones. Tricalcium phosphate is such a ceramic with properties so that it can be used in human body. This research explores the use of binder jetting based additive manufacturing process to create a novel biocomposite made of cobalt chrome and tricalcium phosphate. Experiments were conducted and processing parameters were varied to study their effect on the printing of this biocomposite. Layer thickness, binder saturation and drying time affected the dimensional tolerance and the density of the green samples. This effect is important to understand so that the material can be optimized for use in specific applications.
Keywords:
Subject: Engineering - Industrial and Manufacturing Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.