Preprint
Article

Automated Machine Learning for High-Throughput Image-Based Plant Phenotyping

Altmetrics

Downloads

418

Views

264

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

29 January 2021

Posted:

01 February 2021

You are already at the latest version

Alerts
Abstract
Automated machine learning (AutoML) has been heralded as the next wave in artificial intelligence with its promise to deliver high performance end-to-end machine learning pipelines with minimal effort from the user. However, despite AutoML showing great promise for computer vision tasks, to the best of our knowledge, no study has used AutoML for image-based plant phenotyping. To address this gap in knowledge, we examined the application of AutoML for image-based plant phenotyping using wheat lodging assessment with UAV imagery as an example. We compared the performance of an open-source AutoML framework, AutoKeras in image classification and regression tasks to transfer learning using modern convolutional neural network (CNN) architectures. For image classification which classified plot images as lodged or non-lodged, transfer learning with Xception and DenseNet-201 achieved best classification accuracy of 93.2%, whereas Autokeras had 92.4% accuracy. For image regression which predicted lodging scores from plot images, transfer learning with DenseNet-201 had the best performance (R2=0.8303, RMSE=9.55, MAE=7.03, MAPE=12.54%), followed closely by AutoKeras (R2=0.8273, RMSE=10.65, MAE=8.24, MAPE=13.87%). Interestingly, in both tasks, AutoKeras models had up to 40-fold faster inference times compared to the pretrained CNNs. The merits and drawbacks of AutoML compared to transfer learning for image-based plant phenotyping are discussed.
Keywords: 
Subject: Biology and Life Sciences  -   Agricultural Science and Agronomy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated